ETUDE DU SYSTEME TERNAIRE H₂O–Al(NO₃)₃–Mg(NO₃)₂ I – Isothermes 15, 25, 30, 40 et 50°C

L. Aït Hmaïdouch¹, S. Mançour Billah¹, M. El Hadek^{1*} et G. Coffy²

 ¹Laboratoire de chimie minérale appliquée et de génie des procédés, Université Ibn Zohr Faculté des Sciences d'Agadir, B.P. 28/S, Agadir, Maroc
²Laboratoire de Physico-chimie Minérale I, Université de Lyon I, 43, Bd du 11 novembre 1918 69622 Villeurbanne, Cedex, France

(Reçu le 13 Juillet, 1999)

Abstract

The solid–liquid equilibria of the ternary system H_2O –Al(NO₃)₃–Mg(NO₃)₂ were studied at 15, 25, 30, 40 and 50°C by using a synthetic method which allows to determine all the characteristic points of isothermal sections. In all isotherms the liquidus exhibit two curves corresponding to the saturation in Mg(NO₃)₂·6H₂O and Al(NO₃)₃·9H₂O. Neither double salts nor mixed crystals are observed in the temperature and composition field studied.

Keywords: aluminium nitrate, magnesium nitrate, phase diagram, ternary system

Introduction

'Le stockage de l'énergie thermique intéresse de nombreux domaines de l'activité industrielle et de la vie courante (habitat, transport isotherme...) dont le développement a été accéléré par le souci d'une gestion rationnelle de l'énergie. Grâce au phénomène thermique qui lui est associé, une transformation invariante peut être utilisé pour amortir des fluctuations ou stabiliser une température'.

Les transformations invariantes des systèmes à base de phosphates [1] ou de nitrates [2] sont souvent utilisées pour le stockage de l'énergie calorifique ou frigorifique.

Ce travail est motivé par la recherche de nouvelles transformations invariantes susceptibles d'exister dans le système ternaire $H_2O-Al(NO_3)_3-Mg(NO_3)_2$. En effet, les sels des nitrates métalliques forment une famille de composés assez nombreux, suffisamment solubles dans l'eau et pas trop corrosifs.

Afin de définir la nature des phases solides précipitables, leur solubilité et leurs domaines de stabilité, les équilibres entre phases du système ternaire eau – nitrate d'aluminium – nitrate de magnésium ont été étudiés entre 15 et 50°C.

1418–2874/2000/ \$ 5.00 © 2000 Akadémiai Kiadó, Budapest Akadémiai Kiadó, Budapest Kluwer Academic Publishers, Dordrecht

 ^{*} Auteur de correspondance et tirés à part

Etude bibliographique

Système H₂O-Mg(NO₃)₂

Ce système avait été étudié par plusieurs auteurs jusqu'à 186°C [3–6]. Trois hydrates : le nonahydrate, l'hexahydrate et le dihydrate ont été mis en évidence. Cependant, Sieverts *et coll*. [3] ont signalé l'existence d'un tétrahydrate métastable. Par contre, l'étude qui a été réalisée par Ewing [4] en 1933, ignore complètement l'existence d'un tel hydrate. Le monohydrate est également signalé dans la littérature mais aucune courbe de liquidus ne lui a été attribuée [7].

L'hydrate $Mg(NO_3)_2 \cdot 6H_2O$ présente une fusion congruente à 89,2°C [3]. La transition de $Mg(NO_3)_2 \cdot 9H_2O$ en $Mg(NO_3)_2 \cdot 6H_2O$ s'effectue à -17,1°C pour Sieverts *et coll*. [3] et à -14,7°C pour Ewing *et coll*. [4].

Système H₂O-Al(NO₃)₃

Ce système a été étudié par différents auteurs jusqu'à 130°C environ [8–12]. Quatre branches de liquidus ont été mises en évidence. Elles sont attribuées à la glace, au nonahydrate, à l'octahydrate et à l'hexahydrate. D'autres hydrates ont été signalés dans la littérature mais aucune courbe de liquidus ne leurs a été attribuée [13].

Système H₂O-Mg(NO₃)₂-Al(NO₃)₃

Ce système avait fait l'objet d'une étude limitée à trois températures : 25, 50 et 70°C, par Bunyakina *et coll*. [14]. Ils ont mis en évidence deux domaines de stabilité relatifs au nonahydrate du nitrate d'aluminium et à l'hexahydrate du nitrate de magnésium. Ce système avait été étudié par la méthode des ensembles [15] et des restes [16].

Fig. 1 Système H₂O–Al(NO₃)₃–Mg(NO₃)₂, Isotherme 15°C ; MN6=Mg(NO₃)₂·6H₂O, AN9=Al(NO₃)₃·9H₂O, MN=Mg(NO₃)₂, AN=Al(NO₃)₃, L=liquide

J. Therm. Anal. Cal., 61, 2000

166

Fig. 2 Système H₂O–Al(NO₃)₃–Mg(NO₃)₂, Isotherme 50°C ; MN6=Mg(NO₃)₂·6H₂O, AN9=Al(NO₃)₃·9H₂O, MN=Mg(NO₃)₂, AN=Al(NO₃)₃, L=liquide

Dans cet article nous avons repris l'étude des isothermes 25 et 50°C afin de contrôler les résultats bibliographiques et nous avons étendu l'étude à trois autres températures : 15, 30 et 40°C.

Fraction massique de		Naturo dos domoino limitos	
Al(NO ₃) ₃	$Mg(NO_3)_2$	Nature des domaine limites	
0,3825	0,0000	AN9+liq / liq	
0,3114	0,0813	AN9+liq / liq	
0,2391	0,1665	AN9+liq/liq	
0,2162	0,2259	(AN9+MN6+liq J / AN9+liq)	
0,2022	0,2111	AN9+liq / liq	
0,1832	0,2339	AN9+liq / liq	
0,1483	0,2877	(AN9+MN6+liq J / MN6+liq)	
0,1443	0,2753	MN6+liq / liq	
0,1315	0,3205	(AN9+MN6+liq J / MN6+liq)	
0,1216	0,2963	MN6+liq / liq	
0,0599	0,3521	MN6+liq / liq	
0,0000	0,4114	MN6+liq / liq	

Tableau 1 Système $H_2O-Al(NO_3)_3-Mg(NO_3)_2$; Isotherme 15°C

MN6=Mg(NO₃)₂·6H₂O, AN9=Al(NO₃)₃·9H₂O, liq=liquide

Etude expérimentale

Les sections isothermes étudiées ont été établies en totalité par conductimétrie [17, 18]. C'est une méthode d'étude isotherme isobare, qui permet la détermination rapide, précise et complète des diagrammes d'équilibres d'ordre élevé.

Les mélanges sont préparés à partir du nitrate d'aluminium nonahydraté Labosi pur pour laboratoire et du nitrate de magnésium hexahydraté Panreac P.A. et Fluka Chemica dont la pureté est supérieure à 99%. La composition chimique des produits de départ est contrôlée systématiquement par dosage des ions métalliques par absorption atomique [19] et des ions nitrates par spectrophotométrie d'absorption UV [20]. L'eau, préalablement permutée par passage sur une colonne échangeuse d'ions, est bidistillée avant emploi. La composition des mélanges est déterminée par pesée en tenant compte de l'eau des sels hydratés. Les produits étant hygroscopiques sont conservés dans un dessiccateur.

Résultats expérimentaux

Pour chaque isotherme étudiée nous avons déterminé les points de double saturation, les limites des domaines et les compositions des phases solides.

Fraction massique de			
Al(NO ₃) ₃	Mg(NO ₃) ₂	Nature des domaine limites	
0,3923	0,0000	AN9+liq / liq	
0,3209	0,0838	AN9+liq / liq	
0,2833	0,1268	AN9+liq / liq	
0,2845	0,1274	AN9+liq / liq	
0,2463	0,1715	AN9+liq / liq	
0,2079	0,2172	AN9+liq / liq	
0,1524	0,2956	(AN9+MN6+liq J / MN6+liq)	
0,1465	0,2841	MN6+liq / liq	
0,1436	0,3117	(AN9+MN6+liq J / MN6+liq)	
0,1353	0,3297	(AN9+MN6+liq J / MN6+liq)	
0,1344	0,2917	MN6+liq / liq	
0,1242	0,3028	MN6+liq / liq	
0,1157	0,3626	(AN9+MN6+liq J / MN6+liq)	
0,1023	0,3207	MN6+liq / liq	
0,0404	0,3795	MN6+liq / liq	
0,0000	0,4179	MN6+liq / liq	

Tableau 2 Système H₂O-Al(NO₃)₃-Mg(NO₃)₂ ; Isotherme 25°C

MN6=Mg(NO₃)₂·6H₂O, AN9=Al(NO₃)₃·9H₂O, liq=liquide

Fraction massique de			
Al(NO ₃) ₃	$Mg(NO_3)_2$	Nature des domaine limites	
0,4047	0,0000	AN9+liq / liq	
0,3510	0,0647	AN9+liq / liq	
0,3182	0,1065	AN9+liq / liq	
0,2546	0,1773	AN9+liq / liq	
0,2154	0,2250	AN9+liq / liq	
0,1591	0,3086	(AN9+MN6+liq J / MN6+liq)	
0,1500	0,2911	MN6+liq / liq	
0,1398	0,3408	(AN9+MN6+liq J / MN6+liq)	
0,1318	0,3068	MN6+liq / liq	
0,1204	0,3772	(AN9+MN6+liq J / MN6+liq)	
0,1062	0,3300	MN6+liq / liq	
0,0841	0,3513	MN6+liq / liq	
0,0625	0,3702	MN6+liq / liq	
0,0000	0,4280	MN6+liq / liq	

Tableau 3	Système	H ₂ O-Al	$(NO_3)_3 - N$	$1g(NO_3)_2$;	Isotherme 30°C
		2 ·		(7) - 1/6 7	

MN6=Mg(NO₃)₂·6H₂O, AN9=Al(NO₃)₃·9H₂O, liq=liquide

Tableau 4 Système $H_2O-Al(NO_3)_3-Mg(NO_3)_2$; Isotherme $40^{\circ}C$

Fraction massique de		Notice des demains limites	
Al(NO ₃) ₃	$Mg(NO_3)_2$	Nature des domaine limites	
0,4270	0,0000	AN9+liq / liq	
0,3493	0,0912	AN9+liq / liq	
0,2681	0,1867	AN9+liq / liq	
0,2276	0,2377	AN9+liq / liq	
0,1880	0,2863	(AN9+MN6+liq J / MN6+liq)	
0,1812	0,2760	MN6+liq / liq	
0,1672	0,3244	(AN9+MN6+liq J / MN6+liq)	
0,1566	0,3039	MN6+liq / liq	
0,1464	0,3570	(AN9+MN6+liq / MN6+liq)	
0,1333	0,3248	MN6+liq / liq	
0,0648	0,3855	MN6+liq / liq	
0,0000	0,4418	MN6+liq / liq	

MN6=Mg(NO₃)₂·6H₂O, AN9=Al(NO₃)₃·9H₂O, liq=liquide

Dans le domaine de température étudié, les solides en équilibre avec le liquide dans les deux binaires faisant intervenir l'eau sont $Al(NO_3)_3 \cdot 9H_2O$ et $Mg(NO_3)_2 \cdot 6H_2O$. Les sections isothermes 15, 25, 30, 40 et 50°C comportent deux branches de solubilité

e	Fraction massique de	
(NO ₃) ₂ Nature des domaine limites	Al(NO ₃) ₃ Mg(NO ₃) ₂	
0000 AN9+liq / liq	0,0000	0,4496
1444 AN9+liq / liq	0,1444	0,3225
1949 AN9+liq / liq	0,1949	0,2799
2286 (AN9+MN6+liq J / AN9+liq)	0,2286	0,2675
2223 AN9+liq / liq	0,2223	0,2601
2782 (AN9+MN6+liq J / MN6+liq)	0,2782	0,2184
2702 MN6+liq / liq	0,2702	0,2120
3080 (AN9+MN6+liq J / MN6+liq)	0,3080	0,1965
2912 MN6+liq / liq	0,2912	0,1858
3110 MN6+liq / liq	0,3110	0,1616
3850 MN6+liq / liq	0,3850	0,0785
4625 MN6+liq / liq	0,4625	0,0000

Tableau 5 Système H₂O-Al(NO₃)₃-Mg(NO₃)₂ : Isotherme 50°C

MN6=Mg(NO₃)₂·6H₂O, AN9=Al(NO₃)₃·9H₂O, liq=liquide

correspondant respectivement à la saturation en ces deux solides. Pour les isothermes 25 et 50°C, les résultats que nous avons obtenus sont en parfait accord avec ceux de la bibliographie.

L'ensemble des isothermes présente la même allure. Les Figures 1 et 2 représentent à titre d'exemple les isothermes 15 et 50°C. Les valeurs de la solubilité dans l'eau des différentes isothermes sont regroupées respectivement dans les Tableaux de 1 à 5.

La composition massique des invariants isothermes isobares a été obtenue par l'intersection des courbes de liquidus avec les segments qui limitent le domaine à trois phases. Les coordonnées obtenus sont rassemblées dans le Tableau 6.

T/°C	Fraction n	_ Phases solides	
	Al(NO ₃) ₃	$Mg(NO_3)_2$	en équilibre
15	0,1656	0,2563	MN6+AN9
25	0,1725	0,2633	MN6+AN9
30	0,1844	0,2656	MN6+AN9
40	0,2073	0,2647	MN6+AN9
50	0,2375	0,2594	MN6+AN9

Tableau 6 Système H₂O-Al(NO₃)₃-Mg(NO₃)₂; Invariants isothermes isobares

MN6=Mg(NO₃)₂·6H₂O, AN9=Al(NO₃)₃·9H₂O

Conclusion

Les équilibres solide–liquide du système ternaire eau – nitrate d'aluminium – nitrate de magnésium ont été étudié entre 15 et 50°C à l'aide d'une méthode synthétique qui permet la détermination de toutes les caractéristiques du système.

Cinq isothermes sont établies en totalité à 15, 25, 30, 40 et 50°C et un seul point invariant isotherme isobare est entièrement défini :

Liquide \Leftrightarrow Al(NO₃)₃·9H₂O + Mg(NO₃)₂·6H₂O

Toutes les phases solides qui se manifestent sont stoechiométriques et il ne se forme ni solution solide ni sel double dans le domaine de température et de composition étudié.

Afin d'établir le diagramme polythermique du système ternaire eau – nitrate d'aluminium – nitrate de magnésium nous poursuivons notre étude en déterminant les isothermes -30, -20, -10 et 0°C.

Références

- 1 A. Hammami, Thèse de troisième cycle, 1989, Lyon I, Nº09-89.
- 2 K. Mohamed, Thèse de troisième cycle, 1986, Lyon I, Nº17-86.
- 3 A. Sieverts et W. Petzold, Z. anorg. u. allg. Chem., 205 (1932) 113.
- 4 W. W. Ewing, J. D. Brandner, C. B. Slichter and W. K. Griesinger, J. Am. Chem. Soc., 55 (1933) 4822.
- 5 R. Funk, Z. anorg. Chem., 20 (1899) 393; 32 (1899) 99.
- 6 W. Schröder, Z. anorg. u. allg. Chem., 63 (1929) 184.
- 7 J. Benart et P. Pascal, 'Nouveau traité de chimie minérale', tome IV, Ed. Masson et Cie, 1958, p. 207.
- 8 A. Malquori, Atti. Accd. Lincei, 6 (1927) 892, 451 et 9, 801, 1929, (6), 9, 569; Gazz. Chim. Ital., 58 (1928) 781.
- 9 Zaslawskij and Ravdin, Zhur. Obs. Khim., 9 (1939) 1473.
- 10 Tanaka, J. Am. Soc. Jap. Suppl., 33 (1930) 4883.
- 11 Milligan, J. Am. Chem. Soc., 44 (1922) 567.
- 12 Zaslawsky and Ettinger, Z. Anorg. Chem., 87 (1935) 223, 277.
- 13 P. Pascal, 'Nouveau traité de chimie minérale', tome VI, Ed. Masson et Cie, 1961, p. 634.
- 14 N. V. Bunyakina, A. G. Dryuchko, D. A. Storozhenko and V. G. Shevchuk, Russian Journal of Chemistry, 8 (1985) 30.
- 15 A. Chretien, Ann. Chim., 12 (1929) 26.
- 16 E. A. H. Schreinmakers, Z. Phys. Chim., 11 (1893) 76.
- 17 J. Nyvlt, 'Solid-Liquid Equilibria', Elsevier, Amsterdam 1977, p. 98.
- 18 M. Bouchacourt, Thèse de spécialité, 1976, Lyon nº494.
- M. Pinta, 'Spectroscopie d'Absorption Atomique, Application à l'Analyse Chimique', Ed. Masson et Cie, Paris, 1971.
- 20 R. Bastia, R. Weberling and F. Palilla, 'Chemistry Laboratory', Sylvania, Electric Product-Inc., Flushing, N.Y., 1957, 29 Nº 12, 1795.